Question : A consumer's utility function is $U=X+2 Y$. If the consumer is currently consuming $\mathrm{X}=5$ and $\mathrm{Y}=3$, what is the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ ?
Option 1: 1/2
Option 2: 2/3
Option 3: 3/2
Option 4: 5/3
Correct Answer: 1/2
Solution : The correct answer is (a) $1 / 2$
To find the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$, we need to determine the ratio at which the consumer is willing to trade off $\mathrm{X}$ for $\mathrm{Y}$ while keeping the utility constant. Mathematically, the MRS is given by the negative ratio of the marginal utilities of $\mathrm{X}$ and $\mathrm{Y}$ : $\operatorname{MRS}(\mathrm{X}$ for $\mathrm{Y})=-\mathrm{MUx} / \mathrm{MUy}$ Given the utility function $\mathrm{U}=\mathrm{X}+2 \mathrm{Y}$, we can calculate the marginal utilities as follows: $ \begin{aligned} & \operatorname{MUx}=\mathrm{dU} / \mathrm{dX}=1 \\ & \mathrm{MUy}=\mathrm{dU} / \mathrm{dY}=2 \end{aligned} $
Now, we can substitute the values into the formula for MRS: $\operatorname{MRS}(\mathrm{X}$ for $\mathrm{Y})=-\mathrm{MUx} / \mathrm{MUy}=-1 / 2=-1 / 2$ Since MRS is typically represented as a positive value, we take the absolute value: $\mid \operatorname{MRS}(\mathrm{X}$ for $\mathrm{Y}) \mid=1 / 2$
Question : A consumer's utility function is $U=X Y$. If the consumer is currently consuming $\mathrm{X}=4$ and $\mathrm{Y}=5$, what is the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ ?
Question : A consumer's utility function is $U=X Y$. If the consumer is currently consuming $\mathrm{X}=5$ and $\mathrm{Y}=4$, what is the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ ?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile