Question : A consumer's utility function is $U=X Y$. If the consumer is currently consuming $\mathrm{X}=5$ and $\mathrm{Y}=4$, what is the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ ?
Option 1: 4/5
Option 2: 5/4
Option 3: 20/16
Option 4: 16/20
Correct Answer: 4/5
Solution : The correct answer is (a) $4 / 5$
To find the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$, we need to calculate the ratio of the marginal utility of $\mathrm{X}$ to the marginal utility of $\mathrm{Y}$.
The utility function is $\mathrm{U}=\mathrm{XY}$. To find the marginal utility of $\mathrm{X}$, we differentiate the utility function with respect to $\mathrm{X}$ : $ \partial \mathrm{U} / \partial \mathrm{X}=\mathrm{Y} $
To find the marginal utility of $\mathrm{Y}$, we differentiate the utility function with respect to $\mathrm{Y}$ : $ \partial \mathrm{U} / \partial \mathrm{Y}=\mathrm{X} $
Now we can calculate the MRS: $ \begin{gathered} \mathrm{MRS}=(\partial \mathrm{U} / \partial \mathrm{X}) /(\partial \mathrm{U} / \partial \mathrm{Y}) \\ \quad=\mathrm{Y} / \mathrm{X} \end{gathered} $
Substituting $\mathrm{X}=5$ and $\mathrm{Y}=4$ : $ \operatorname{MRS}=4 / 5 $
Therefore, the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ is $4 / 5$.
Question : A consumer's utility function is $U=X Y$. If the consumer is currently consuming $\mathrm{X}=4$ and $\mathrm{Y}=5$, what is the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ ?
Question : A consumer's utility function is $\mathrm{U}=\mathrm{X}^{\wedge} 2+\mathrm{Y}^{\wedge} 2$. If the consumer is currently consuming $X=3$ and $Y=4$, what is the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ ?
Question : A consumer's utility function is $U=X Y$. If the consumer is currently consuming $X=4$ and $Y=5$, what is the marginal rate of substitution (MRS) of $\mathrm{X}$ for $\mathrm{Y}$ ?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile