14 Views

Question : A cuboid of sides 12 cm, 18 cm, and 27 cm is melted to form a cube. What is the ratio of the total surface area of the cuboid to that of the cube?

Option 1: $18 : 17$

Option 2: $17 : 19$

Option 3: $19 : 18$

Option 4: $17 : 23$


Team Careers360 12th Jan, 2024
Answer (1)
Team Careers360 13th Jan, 2024

Correct Answer: $19 : 18$


Solution : Volume of cuboid = 12 × 18 × 27 = 5832 cm 3
Let $a$ be the side of a cube.
Volume of cube = $a^3$ = 5832
⇒ $a$ = $\sqrt[3]{5832}$ = 18 cm
Surface area of the cuboid = 2(12 × 18 + 18 × 27 + 27 × 12)
= 2(216 + 486 + 324)
= 2 × 1026
= 2052
Surface area of the cube = 6 × 18 × 18 = 1944
So, the required ratio = $2052 : 1944 = 19 : 18$
Hence, the correct answer is $19 : 18$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books