2 Views

Question : A pole of length 7 m is fixed vertically on the top of a tower. The angle of elevation of the top of the pole observed from a point on the ground is 60° and the angle of depression of the same point on the ground from the top of the tower is 45°. The height (in m) of the tower is:

Option 1: $7(2 \sqrt{3}-1)$

Option 2: $\frac{7}{2}(\sqrt{3}+2)$

Option 3: $7 \sqrt{3}$

Option 4: $\frac{7}{2}(\sqrt{3}+1)$


Team Careers360 2nd Jan, 2024
Answer (1)
Team Careers360 18th Jan, 2024

Correct Answer: $\frac{7}{2}(\sqrt{3}+1)$


Solution :
Let pole be AD and tower be BD.
Given,
$AD = 7\ m$
In $\triangle BCD$
$\tan45^\circ = \frac{BD}{BC}$
⇒ $1 = \frac{BD}{BC}$
⇒ $BC = BD$
In $\triangle ABC$
$\tan60^\circ = \frac{AB}{BC}$
⇒ $\sqrt3 = \frac{AB}{BC}$
⇒ $AB = \sqrt3BC$
⇒ $AD + BD = \sqrt3 BD$
⇒ $\sqrt3BD - BD = 7$
⇒ $BD(\sqrt3 - 1) = 7$
⇒ $BD= \frac{7}{(\sqrt3 - 1)} × \frac{(\sqrt3 + 1)}{(\sqrt3 + 1)}$
$= \frac{7(\sqrt3 + 1)}{(\sqrt3)^2 - 1^2}$
$= \frac{7(\sqrt3 + 1)}{(3 - 1)}$
$= \frac{7}{2}(\sqrt3 + 1)$
Hence, the correct answer is $\frac{7}{2}(\sqrt3 + 1)$.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books