7 Views

Question : A pole stands vertically on a road, which goes in the north-south direction. P and Q are two points towards the north of the pole, such that $P Q=b$, and the angles of elevation of the top of the pole at $P, Q$ are $\alpha, \beta$ respectively. Then the height of the pole is:

Option 1: $\frac{b}{\tan \beta+\tan \alpha}$

Option 2: $\frac{b}{\tan \beta-\tan \alpha}$

Option 3: $\frac{b}{\cot \beta-\cot \alpha}$

Option 4: $\frac{\mathrm{b} \tan \alpha}{\tan \beta}$


Team Careers360 2nd Jan, 2024
Answer (1)
Team Careers360 23rd Jan, 2024

Correct Answer: $\frac{b}{\cot \beta-\cot \alpha}$


Solution :
Let the height of the pole be $h$ cm.
$PQ = b$
In $\triangle ABQ$
⇒ $\tan \beta = \frac{AB}{BQ}$
⇒ $\tan \beta = \frac{h}{BQ}$
⇒ $BQ = \frac{h}{\tan \beta}$
⇒ $BQ = h \cot \beta$
In $\triangle ABP$
⇒ $\tan \alpha = \frac{AB}{BP}$
⇒ $\tan \alpha = \frac{h}{BP}$
⇒ $BP = \frac{h}{\tan \alpha}$
⇒ $BP = h \cot \alpha$
⇒ $BQ = BP + PQ$
⇒ $h \cot \beta = h \cot \alpha + b$
⇒ $h (\cot \beta - \cot \alpha) = b$
⇒ $h = \frac{b}{\cot \beta - \cot \alpha}$
Hence, the correct answer is $\frac{b}{\cot \beta - \cot \alpha}$.

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books