3 Views

Question : A solid metallic sphere of radius 4 cm is melted and recast into spheres of 2 cm each. What is the ratio of the surface area of the original sphere to the sum of the surface areas of the spheres, so formed?

Option 1: 2 : 1

Option 2: 2 : 3

Option 3: 1 : 2

Option 4: 1 : 4


Team Careers360 13th Jan, 2024
Answer (1)
Team Careers360 14th Jan, 2024

Correct Answer: 1 : 2


Solution : Given: Radius of bigger sphere = 4 cm
The radius of a smaller sphere = 2 cm
Let the radius of the bigger sphere be $R$ and smaller be $r$.
According to the question,
Number of spheres formed = $\frac{\text{Volume of bigger sphere}}{\text{Volume of smaller spheres}}$
= $\frac{\frac{4}{3}\pi R^3}{\frac{4}{3}\pi r^3}$
= $\frac{R^3}{r^3}$
= $\frac{4^3}{2^3}$
= 8
Now, the surface area of the original sphere = $4\pi R^2$ = $4\pi (4)^2$ = $64\pi$
And sum of surface area of small spheres = $8 × 4\pi (2)^2$ = $128\pi$
The required ratio = $64\pi : 128\pi= 1 : 2$
Hence, the correct answer is 1 : 2.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books