3 Views

Question : A sum of INR 1,250 has to be distributed among A, B, C, and D. The Total share of B and D is equal to $\frac{14}{11}$ of the total share of A and C. The share of D is half of the share of A. The share of C is 1.2 of the share of A. What are the shares of A, B, C and D respectively?

Option 1: INR 250, INR 575, INR 300, INR 125

Option 2: INR 350, INR 525, INR 300, INR 125

Option 3: INR 250, INR 525, INR 300, INR 125

Option 4: INR 250, INR 575, INR 300, INR 175


Team Careers360 14th Jan, 2024
Answer (1)
Team Careers360 16th Jan, 2024

Correct Answer: INR 250, INR 575, INR 300, INR 125


Solution : Given: A sum of INR 1,250 has to be distributed among A, B, C, and D.
B + D = $\frac{14}{11}$(A + C)
D = $\frac{1}{2}$A and C = 1.2A = $\frac{12}{10}$A = $\frac{6}{5}$A
B + D = $\frac{14}{11}$(A + C)
⇒ 11B + $\frac{11}{2}$A = 14(A + $\frac{6}{5}$A)
⇒ 11B + $\frac{11}{2}$A = 14 × $\frac{11}{5}$A
⇒ 11B = $\frac{154}{5}$A – $\frac{11}{2}$A
⇒ 11B = $\frac{308–55}{10}$A
⇒ 11B = $\frac{253}{10}$A
⇒ B = $\frac{23}{10}$A
According to the question,
A + B + C + D = 1250
⇒ A + $\frac{23}{10}$A + $\frac{6}{5}$A + $\frac{1}{2}$A = 1250
⇒ $\frac{20+46+24+10}{20}$A = 1250
⇒ $\frac{100}{20}$A = 1250
⇒ 5A = 1250
⇒ A = INR 250
The values of B, C, and D are given as,
B = $\frac{23\times 250}{10}$ = INR 575
C = $\frac{6\times 250}{5}$ = INR 300
D = $\frac{250}{2}$ = INR 125
Hence, the correct answer is INR 250, INR 575, INR 300, INR 125.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books