6 Views

Question : A tap can fill a tank in $5 \frac{1}{2}$ hours. Because of a leak, it took $8 \frac{1}{4}$ hours to fill the tank. In how much time (in hours) will the leak alone empty 30% of the tank?

Option 1: $\frac{99}{20}$

Option 2: $\frac{5}{2}$

Option 3: $\frac{9}{2}$

Option 4: $\frac{17}{2}$


Team Careers360 1st Jan, 2024
Answer (1)
Team Careers360 19th Jan, 2024

Correct Answer: $\frac{99}{20}$


Solution : Time taken by A to fill the tank = $5\frac{1}{2}\ \text{hours} = \frac{11}{2}\ \text{hours}$
Because of leak, the tank filled in = $8\frac{1}{4}\ \text{hours} = \frac{33}{4}\ \text{hours}$
LCM of 11 and 33 = 33
Capacity of the tank = 33
Efficiency of A to fill the tank = $(33×\frac{2}{11}) = 6$
Combined Efficiency of leak + A = $\frac{33}{\frac{33}{4}}=4$
Efficiency of Leak = 4 – 6 = – 2
30% of the tank = $33×\frac{30}{100}=\frac{99}{10}$
Required time to empty = $\frac{\frac{99}{10}}{2}=\frac{99}{20}\ \text{hours}$
Hence, the correct answer is $\frac{99}{20}\ \text{hours}$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books