4 Views

Question : A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height $h$ units. At a point on the plane, the angle of elevation at the bottom of the flagstaff is $\alpha$ and that of the top of the flagstaff is $\beta$. Then the height of the tower is:

Option 1: $h\tan\alpha$

Option 2: $\frac{h\tan\alpha}{(\tan\beta–\tan\alpha)}$

Option 3: $\frac{h\tan\alpha}{(\tan\alpha–\tan\beta)}$

Option 4: None of these


Team Careers360 15th Jan, 2024
Answer (1)
Team Careers360 22nd Jan, 2024

Correct Answer: $\frac{h\tan\alpha}{(\tan\beta–\tan\alpha)}$


Solution : Given: A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height h. The angle of elevation at the bottom of the flagstaff is $\alpha$ and that of the top of the flagstaff is $\beta$.
We know that $\tan\theta=\frac{\text{Perpendicular}}{\text{Base}}$
Let AB be $x$.


From the figure, it is clear that in $\triangle ADB$, $\tan\alpha =\frac{AD}{AB}$
$\tan\alpha =\frac{H}{x}$
⇒ $x =\frac{H}{\tan\alpha}$
Similarly, in $\triangle CAB$, $\tan\beta =\frac{CA}{AB}$
$\tan\beta =\frac{h+H}{x}$
⇒ $x =\frac{h+H}{\tan\beta}$
So, $\frac{h+H}{\tan\beta}=\frac{H}{\tan\alpha}$
⇒ $H\tan\beta=h\tan\alpha+H\tan\alpha$
⇒ $H (\tan\beta–\tan\alpha)=h\tan\alpha$
⇒ $H =\frac{h\tan\alpha}{(\tan\beta–\tan\alpha)}$
Hence, the correct answer is $\frac{h\tan\alpha}{(\tan\beta–\tan\alpha)}$.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books