Question : ABC is a triangle in which DE || BC and AD : DB = 5 : 4. Then DE : BC is:
Option 1: 4 : 5
Option 2: 4 : 9
Option 3: 9 : 5
Option 4: 5 : 9
New: SSC CGL 2025 Tier-1 Result
Latest: SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 5 : 9
Solution : AD : DB = 5 : 4 In $\triangle$ADE and $\triangle$ABC, $\angle$ADE = $\angle$ABC and $\angle$AED = $\angle$ACB [i.e., corresponding angles in DE || BC] $\angle$A = $\angle$A [common angle] ⇒ $\triangle$ADE ~ $\triangle$ABC ⇒ $\frac{\text{AD}}{\text{AB}}$ = $\frac{\text{DE}}{\text{BC}}$ ⇒ $\frac{5}{5+4}$ = $\frac{\text{DE}}{\text{BC}}$ ⇒ $\frac{\text{DE}}{\text{BC}}$ = $\frac{5}{9}$ Hence, the correct answer is 5 : 9.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In $\triangle ABC$, $D$ and $E$ are points on sides $AB$ and $AC$, such that $DE$ II $BC$. If $AD=x+3$, $DB =2 x-3$, $A E=x+1$ and $EC=2 x-2$, then the value of $x$ is:
Option 1: $\frac{4}{5}$
Option 2: $\frac{1}{2}$
Option 3: $\frac{3}{5}$
Option 4: $\frac{1}{5}$
Question : In $\triangle ABC$, D and E are points on the sides AB and AC, respectively, such that DE || BC. If AD = 5 cm, DB = 9 cm, AE = 4 cm, and BC = 15.4 cm, then the sum of the lengths of DE and EC (in cm) is:
Option 1: 11.6
Option 2: 10.8
Option 3: 13.4
Option 4: 12.7
Question : In $\triangle \text{ABC}, \mathrm{DE} \| \mathrm{BC}$ and $\frac{\text{AD}}{\text{DB}}=\frac{4}{5}$. If $\mathrm{DE}=12 \mathrm{~cm}$, find the length of $\mathrm{BC}$.
Option 1: 48 cm
Option 2: 12 cm
Option 3: 30 cm
Option 4: 27 cm
Question : In $\triangle$ABC, the bisector of $\angle$BAC intersects BC at D and the circumcircle of $\triangle$ABC at E. If AB : AD = 3 : 5, then AE : AC is:
Option 1: 5 : 3
Option 2: 3 : 2
Option 3: 2 : 3
Option 4: 3 : 5
Question : In a $\triangle ABC$, if $\angle A=90^{\circ}, AC=5 \mathrm{~cm}, BC=9 \mathrm{~cm}$ and in $\triangle PQR, \angle P=90^{\circ}, PR=3 \mathrm{~cm}, QR=8$ $\mathrm{cm}$, then:
Option 1: $\triangle ABC \cong \triangle PQR$
Option 2: $ar(\triangle ABC)\neq ar(\triangle PQR)$
Option 3: $ar(\triangle ABC) \leq ar(\triangle PQR)$
Option 4: $ar(\triangle ABC)=ar(\triangle PQR)$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile