Question : ABCD is a cyclic quadrilateral in which angle B is opposite to angle D. If $\angle \mathrm{B}=(\mathrm{x}+10)^{\circ}$ and $\angle \mathrm{D}=(2 \mathrm{x}+35)^{\circ}$, then what is the value of $\mathrm{x}$?
Option 1: 40$^{\circ}$
Option 2: 45$^{\circ}$
Option 3: 50$^{\circ}$
Option 4: 35$^{\circ}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 45$^{\circ}$
Solution : Given, ABCD is a cyclic quadrilateral in which angle B is opposite to angle D. $\angle \mathrm{B}=(\mathrm{x}+10)^{\circ}$ and $\angle \mathrm{D}=(2 \mathrm{x}+35)^{\circ}$ We know the opposite angles of a cyclic quadrilateral are supplementary. So, $\angle \mathrm{B}+\angle \mathrm{D}=180^\circ$ ⇒ $\mathrm{x}+10^\circ+2 \mathrm{x}+35^\circ=180^\circ$ ⇒ $3\mathrm{x}+45^\circ=180^\circ$ ⇒ $3\mathrm{x}=135^\circ$ ⇒ $\mathrm{x}=45^\circ$ Hence, the correct answer is 45$^{\circ}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : ABCD is a cyclic quadrilateral, AB is the diameter of the circle. If angle $\angle ACD=45^{\circ}$, then what is the value of $\angle BAD$?
Question : $\mathrm{PQRS}$ is a cyclic quadrilateral. In $\mathrm{PQRS}, \angle \mathrm{P}$ is opposite to $\angle \mathrm{R}$. If $\angle \mathrm{P}$ and $\angle \mathrm{R}$ are $3 \mathrm{x}+5$ and $4 \mathrm{x}$ respectively, then what is the value of $\mathrm{x}$ ?
Question : If $ABCD$ is a cyclic quadrilateral with $\angle A=50^{\circ},\angle B=80^{\circ}$, then $\angle C$ and $ \angle D$ are:
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=5 \mathrm{x}-60^{\circ}, \angle \mathrm{B}=2 \mathrm{x}+40^{\circ}, \angle \mathrm{C}=3 \mathrm{x}-80^{\circ}$. Find $\angle \mathrm{A}$.
Question : In a cyclic quadrilateral ABCD. $\angle {A}$ is opposite to $\angle {C}$. If $\angle {A}=110°$, then what is the value of $\angle {C}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile