1 View

Question : ABCD is a square. Draw a triangle QBC on side BC considering BC as a base and draw a triangle PAC on AC as its base such that $\Delta$QBC$\sim\Delta$PAC. Then, $\frac{\text{Area of $\Delta$QBC}}{\text{Area of  $\Delta$PAC}}$ is equal to:

Option 1: $\frac{1}{2}$

 

Option 2: $\frac{2}{1}$

Option 3: $\frac{1}{3}$

Option 4: $\frac{2}{3}$


Team Careers360 3rd Jan, 2024
Answer (1)
Team Careers360 20th Jan, 2024

Correct Answer: $\frac{1}{2}$


Solution :
We have,
$\Delta$QBC$\sim\Delta$PAC
Since ABCD is a square,
AB = BC = CD = DA
In $\Delta$ABC,
$ ⇒AC=\sqrt{(AB)^2+(BC)^2}$
$⇒ AC=\sqrt{(2BC)^2}$
$⇒AC=\sqrt{2}BC$
In similar triangles, the ratio of their areas is equal to the square of the ratio of their corresponding sides.
$⇒\frac{\text{Area of $\Delta$QBC}}{\text{Area of  $\Delta$PAC}}=(\frac{BC}{AC})^2$
$⇒\frac{\text{Area of $\Delta$QBC}}{\text{Area of  $\Delta$PAC}}=(\frac{BC}{\sqrt{2}BC})^2$
$⇒\frac{\text{Area of $\Delta$QBC}}{\text{Area of  $\Delta$PAC}}=\frac{1}{2}$
Hence, the correct answer is $\frac{1}{2}$.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books