Question : $\triangle \mathrm{XYZ} \sim \triangle \mathrm{GST}$ and $\mathrm{XY}: \mathrm{GS}=2: 3, \mathrm{XV}$ is the median to the side $\mathrm{YZ}$, and $\mathrm{GD}$ is the median to the side ST. The value of $\left(\frac{\mathrm{YV}}{\mathrm{SD}}\right)^2$ is:
Option 1: $\frac{4}{9}$
Option 2: $\frac{3}{5}$
Option 3: $\frac{1}{4}$
Option 4: $\frac{2}{3}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{4}{9}$
Solution : Given: $\Delta \mathrm{XYZ} \sim \Delta \mathrm{GST}$ $\left(\frac{\mathrm{YV}}{\mathrm{SD}}\right)=\left(\frac{\mathrm{XY}}{\mathrm{GS}}\right)$ $\therefore\left(\frac{\mathrm{YV}}{\mathrm{SD}}\right)^2=\left(\frac{\mathrm{XY}}{\mathrm{GS}}\right)^2=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^2=\frac{4}{9}$ Hence, the correct answer is $\frac{4}{9}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : In a $\triangle \mathrm{XYZ}, \mathrm{XO}$ is the median and $\mathrm{XO}=\frac{1}{2} \mathrm{YZ}$. If $\angle \mathrm{YXO}=30^{\circ}$, then what is the value of $\angle \mathrm{XYZ}$?
Question : $\triangle$ABC is similar to $\triangle$PQR and AB : PQ = 2 : 3. AD is the median to the side BC in $\triangle$ABC and PS is the median to the side QR in $\triangle$PQR. What is the value of $(\frac{BD}{QS})^2$?
Question : If $\triangle A B C \sim \triangle F D E$ such that $A B=9 \mathrm{~cm}, A C=11 \mathrm{~cm}, D F=16 \mathrm{~cm}$ and $D E=12 \mathrm{~cm}$, then the length of $BC$ is:
Question : $3\left[\mathrm{a}-\frac{1}{\mathrm{a}}\right]+\left[\mathrm{a}-\frac{1}{\mathrm{a}}\right]^3=?$
Question : What is the value of
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile