59 Views

diffrentiate (sinx-cosx)^sinx-cosx


mhkbhinder 18th Aug, 2021
Answer (1)
Subhrajit Mukherjee 18th Aug, 2021

See this is a very un often kind of a equation. Let u(x)=sinx -cosx. Thus the equation provided reduces to u^u. Let the function f(x)=u^u. Now taking log in both sides we get,

log f(x)= u log(u)

Differentiating both side we get: 1/f(x) * f'(x)= u' logu+u'/u => f'(x)=f(x)[u' logu+u'/u] where u' is the first order derivative of u and f'(x) is the first order derivative of f(x) with respect to x.

Now u'=cosx+sinx Thus, f'(x)=(sinx-cosx)^(sinx-cosx)[(cosx+sinx) log (sinx-cosx)+(sin+cosx)/(sinx-cosx)].

This can be one of the solution of the derivative of the given function.

I hope this answer helps. All the very best for your future endeavors!

Related Questions

Amrita University B.Tech 2026
Apply
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships
UPES B.Tech Admissions 2026
Apply
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
UPES Integrated LLB Admission...
Apply
Ranked #18 amongst Institutions in India by NIRF | Ranked #1 in India for Academic Reputation by QS Rankings | 16 LPA Highest CTC
Great Lakes Institute of Mana...
Apply
Admissions Open | Globally Recognized by AACSB (US) & AMBA (UK) | 17.8 LPA Avg. CTC for PGPM 2025
Jain University, Bangalore - ...
Apply
NAAC A++ Approved | Curriculum Aligned with BCI & UGC
Nirma University Law Admissio...
Apply
Grade 'A+' accredited by NAAC | Ranked 33rd by NIRF 2025
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books