Question : Directions: In the given question, select the related letter from the given alternatives. D : B :: I : C :: P : D :: ? : ?
Option 1: Y : E
Option 2: X : E
Option 3: Y : D
Option 4: Z : E
Correct Answer: Y : E
Solution : Given: D : B :: I : C :: ? : ?
Like, (D : B); Position value of D→4, 4 is the perfect square of 2; 2→B Thus, D is related to B. (I : C); Position value of I→9, 9 is the perfect square of 3; 3→C Thus, I is related to C. Let's check the options – First option: Y : E; Y→25; 25 is the perfect square of 5; 5→E Second option: X : E; X→24; 24 is not a perfect square. Third option: Y : D; Y→25; 25 is the perfect square of 5; 5→E ≠ D Fourth option: Z : E; Z→26; 26 is not a perfect square.
So, Y is related to E in the same way as the given pairs. Hence, the first option is correct.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Directions: In the given question, select the related letter from the given alternatives. A : B :: B : D :: C : F :: ? : ?
Question : Directions: Select the related letter/number from the given alternatives. N x M : 14 x 13 : : X x Z : ?
Question : What is $\frac{\left (x^{2}-y^{2} \right)^{3}+\left (y^{2}-z^{2} \right )^{3}+\left (z^{2}-x^{2} \right )^{3}}{\left (x-y \right)^{3}+\left (y-z \right )^{3}+\left (z-x \right)^{3}}?$
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}$, where $x \neq y \neq z$, is:
Question : If $x^2 = y+z$, $y^2=z+x$, $z^2=x+y$, then the value of $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile