Question : Directions: Select the set in which the numbers are related in the same way as the numbers of the following sets.
(NOTE: Operations should be performed on the whole numbers, without breaking down the numbers into their constituent digits. E.g. 13 – operations on 13 such as adding/subtracting/multiplying etc. to 13 can be performed. Breaking down 13 into 1 and 3 and then performing mathematical operations on 1 and 3 is NOT allowed.)
$\left[\left(\frac{7}{9}\right),\left(\frac{31}{39}\right)\right];\left[\left(\frac{3}{5}\right),\left(\frac{15}{23}\right)\right]$
Option 1: $\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]$
Option 2: $\left[\left(\frac{9}{13}\right),\left(\frac{37}{55}\right)\right]$
Option 3: $\left[\left(\frac{9}{11}\right),\left(\frac{32}{37}\right)\right]$
Option 4: $\left[\left(\frac{17}{19}\right),\left(\frac{36}{77}\right)\right]$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
Correct Answer: $\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]$
Solution :
Given:
$\left[\left(\frac{7}{9}\right),\left(\frac{31}{39}\right)\right];\left[\left(\frac{3}{5}\right),\left(\frac{15}{23}\right)\right]$
In the given sets, multiply both the numerator and the denominator by 4, and then add 3.
$\left[\left(\frac{7}{9}\right),\left(\frac{31}{39}\right)\right]$→$\left[\left(\frac{(7 × 4) + 3}{(9 × 4) + 3}\right) = (\frac{28 + 3}{36 + 3}) =\left(\frac{31}{39}\right)\right]$
$\left[\left(\frac{3}{5}\right),\left(\frac{15}{23}\right)\right]$→$\left[\left(\frac{(3 × 4) + 3}{(5 × 4) + 3}\right) = (\frac{12 + 3}{20 + 3}) =\left(\frac{15}{23}\right)\right]$
Let's check the options –
First option:
$\left[\left(\frac{11}{13}\right),\left(\frac{47}{55}\right)\right]$→$\left[\left(\frac{(11 × 4) + 3}{(13 × 4) + 3}\right) = (\frac{44 + 3}{52 + 3}) =\left(\frac{47}{55}\right)\right]$
Second option:
$\left[\left(\frac{9}{13}\right),\left(\frac{37}{55}\right)\right]$→$\left[\left(\frac{(9 × 4) + 3}{(13 × 4) + 3}\right) = (\frac{36 + 3}{52 + 3}) =\left(\frac{39}{55})\neq(\frac{37}{55}\right)\right]$
Third option:
$\left[\left(\frac{9}{11}\right),\left(\frac{32}{37}\right)\right]$
→$\left[\left(\frac{(9 × 4) + 3}{(11 × 4) + 3}\right) = (\frac{36 + 3}{44 + 3}) =\left(\frac{39}{47})\neq(\frac{32}{37}\right)\right]$
Fourth option:
$\left[\left(\frac{17}{19}\right),\left(\frac{36}{77}\right)\right]$
→$\left[\left(\frac{(17 × 4) + 3}{(19 × 4) + 3}\right) = (\frac{68 + 3}{76 + 3}) =\left(\frac{71}{79})\neq(\frac{36}{77}\right)\right]$
So, only the first option follows the same pattern as followed by the given set of numbers. Hence, the first option is correct.
Related Questions
Know More about
Staff Selection Commission Combined Grad ...
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Get Updates BrochureYour Staff Selection Commission Combined Graduate Level Exam brochure has been successfully mailed to your registered email id “”.