Question : Evaluate: $\frac{\sqrt{24}+\sqrt{6}}{\sqrt{24}-\sqrt{6}}$
Option 1: 2
Option 2: 3
Option 3: 4
Option 4: 5
Correct Answer: 3
Solution : Given: $\frac{\sqrt{24}+\sqrt{6}}{\sqrt{24}-\sqrt{6}}$ $=\frac{2\sqrt{6}+\sqrt{6}}{2\sqrt{6}-\sqrt{6}}$ $=\frac{3\sqrt{6}}{\sqrt{6}}$ $= 3$ Hence, the correct answer is 3.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Question : $\frac{\sqrt{24} + \sqrt{216}}{\sqrt{96}}$ is equal to:
Question : In $\triangle ABC, \angle B=90^{\circ}$ and AB : BC = 1 : 2. The value of $\cos A+\tan C$ is:
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Question : If $a-\frac{1}{a}=4$, then the value of $a+\frac{1}{a}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile