Question : Evaluate $\frac{\sin 54^{\circ}}{\cos 36^{\circ}}+\frac{\sec 46^{\circ}}{\operatorname{cosec} 44^{\circ}}$
Option 1: 0
Option 2: –1
Option 3: 2
Option 4: 1
Correct Answer: 2
Solution : Given: $\frac{\sin 54^{\circ}}{\cos 36^{\circ}}+\frac{\sec 46^{\circ}}{\operatorname{cosec} 44^{\circ}}$ = $\frac{\sin 54^{\circ}}{\cos (90^{\circ}-54^{\circ})}+\frac{\sec 46^{\circ}}{\operatorname{cosec} (90^{\circ}-46^{\circ})}$ = $\frac{\sin 54^{\circ}}{\sin 54^{\circ}}+\frac{\sec 46^{\circ}}{\sec 46^{\circ}}$ = $1 + 1$ = $2$ Hence, the correct answer is 2.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}-\sec 35^{\circ} \cdot \sin 55^{\circ}}{\sec 60^{\circ}+\operatorname{cosec} 30^{\circ}}$ is equal to:
Question : Find the value of $\frac{\cos 37^{\circ}}{\sin 53^{\circ}}-\cos 47^{\circ} \operatorname{cosec} 43^{\circ}$.
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}+\sec 45^{\circ} × \sin 45^{\circ}}{\sec 60^{\circ}+{\text{cosec}} 30^{\circ}}$ is:
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : Find the value of $\frac{\cos 65^{\circ}}{\sin 25^{\circ}}+\frac{5 \sin 19^{\circ}}{\cos 71^{\circ}}-\frac{3 \cos 28^{\circ}}{\sin 62^{\circ}}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile