Question : Evaluate $\sqrt{20}+\sqrt{12}+\sqrt[3]{729}-\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{81}:$
Option 1: $\sqrt{2}$
Option 2: $\sqrt{3}$
Option 3: $0$
Option 4: $2\sqrt{2}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : $\sqrt{20}+\sqrt{12}+\sqrt[3]{729}-\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{81}$ $=2\sqrt{5}+2\sqrt{3}+9-\frac{4}{\sqrt{5}-\sqrt{3}}\times\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}-9$ $=2(\sqrt{5}+\sqrt{3})-\frac{4\times(\sqrt{5}+\sqrt{3})}{5-3}$ $=(\sqrt{5}+\sqrt{3})(2-2)$ $=0$ Hence, the correct answer is $0$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=\frac{4\sqrt{15}}{\sqrt{5}+\sqrt{3}}$, the value of $\frac{x+\sqrt{20}}{x–\sqrt{20}}+\frac{x+\sqrt{12}}{x–\sqrt{12}}$ is:
Question : The simplified value of $\frac{3\sqrt 2 }{\sqrt3 + \sqrt6} - \frac{4 \sqrt 3 }{\sqrt{6}+ \sqrt {2}} + \frac{\sqrt 6}{\sqrt{3}+ \sqrt 2}$ is:
Question : If $\tan \theta=\frac{4}{5}$, then $\sec \theta$ is:
Question : Simplify: $\sqrt{\frac{4\frac{1}{7}-2\frac{1}{4}}{3\frac{1}{2}+1\frac{1}{7}}+\frac{2}{2+\frac{1}{2+\frac{1}{5-\frac{1}{5}}}}}$
Question : If $x=(7+3 \sqrt{5})$, then find the value of $x^2+\frac{1}{x^2}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile