Question : Evaluate the following: $\cos \left(36^{\circ}+A\right) \cdot \cos \left(36^{\circ}-A\right)+\cos \left(54^{\circ}+A\right) \cdot \cos \left(54^{\circ}-A\right)$
Option 1: $\sin 2A$
Option 2: $\cos A$
Option 3: $\sin A$
Option 4: $\cos 2A$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\cos 2A$
Solution : $\cos (36^{\circ}+A). \cos (36^{\circ}-A)+\cos (54^{\circ}+A) .\cos (54^{\circ}-A)$ = $\cos (36^{\circ}+A) . \cos (36^{\circ}-A)+\sin [90^{\circ}-(54^{\circ}+A)] . \sin [90^{\circ}-(54^{\circ}-A )]$ = $\cos (36^{\circ}+A) \cdot \cos (36^{\circ}-A)+\sin (36^{\circ}-A) \cdot \sin (36^{\circ}+A)$ = $\cos (36^{\circ}+A-36^{\circ}+A )$ [$\because \cos(A- B) =\sin A.\sin B +\cos A. \cos B$] = $\cos 2A$ Hence, the correct answer is $\cos 2A$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Evaluate the following. $\sin 25^{\circ} \sin 65^{\circ}-\cos 25^{\circ} \cos 65^{\circ}$.
Question : Solve the following to find its value in terms of trigonometric ratios. $(\sin A + \cos A)(1 - \sin A \cos A)$
Question : The value of $\left(\sin 30^{\circ} \cos 60^{\circ}-\cos 30^{\circ} \sin 60^{\circ}\right)$ is equal to:
Question : If $\left(\frac{\cos A}{1-\sin A}\right)+\left(\frac{\cos A}{1+\sin A}\right)=4$, then what will be the value of $A$? $\left(0^{\circ}<\theta<90^{\circ}\right)$
Question : Evaluate the expression: $\frac{\sin ^2 63^{\circ}+\sin ^2 27^{\circ}}{\cos ^2 17^{\circ}+\cos ^2 73^{\circ}}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile