Question : Find the LCM of $\frac{3}{2}, \frac{81}{16}$ and $\frac{9}{8}$
Option 1: $\frac{91}{2}$
Option 2: $\frac{81}{2}$
Option 3: $\frac{111}{2}$
Option 4: $\frac{101}{2}$
Correct Answer: $\frac{81}{2}$
Solution : Given fractions = $\frac{3}{2}, \frac{81}{16}$ and $\frac{9}{8}$ We know that, LCM of a fraction = $\frac{\text{LCM of the numerators}}{\text{HCF of the denominators}}$ LCM of 3, 81, 9 is 81. HCF of 2, 16 and 8 is 2. $\therefore$ LCM of $\frac{3}{2}, \frac{81}{16}$ and $\frac{9}{8}$ = $\frac{81}{2}$ Hence, the correct answer is $\frac{81}{2}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The LCM of $\frac{1}{3}, \frac{3}{5}, \frac{4}{7}$ and $\frac{9}{16}$ is:
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}+\frac{3}{4} \div \frac{1}{2}$ is:
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}-\frac{3}{4}+\frac{3}{4} \div \frac{1}{2}$ is:
Question : What is the value of $111\frac{1}{2} + 111\frac{1}{6} + 111\frac{1}{12} + 111\frac{1}{20} + 111\frac{1}{30}?$
Question : The value of $\frac{5-2 \div 4 \times[5-(3-4)]+5 \times 4 \div 2 \text { of } 4}{4+4 \div 8 \text { of } 2 \times(8-5) \times 2 \div 3-8 \div 2 \text { of } 8}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile