Question : Find the mean proportion of $x^3y$ and $xy^3$.
Option 1: $x^2y^2$
Option 2: $x^3y^3$
Option 3: $xy$
Option 4: $x^4 y^4$
Correct Answer: $x^2y^2$
Solution : Let the mean proportion be $a$ Given numbers, $x^3y$ and $xy^3$ ⇒ $a^2=x^3y\times xy^3$ ⇒ $a^2=x^4y^4$ ⇒ $a=x^2y^2$ Hence, the correct answer is $x^2y^2$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Simplify the given expression. $(x - 2y)(y - 3x) + (x + y)(x - y) + (x - 3y)(2x + y)$
Question : If $x^4+x^2 y^2+y^4=133$ and $x^2-x y+y^2=7$, then what is the value of $xy$?
Question : If $x= 19$ and $y= 18$, then the value of $\frac{x^{2}+y^{2}+xy}{x^{3}-y^{3}}$ is:
Question : If $x^4+x^2 y^2+y^4=21$ and $x^2+xy+y^2=3$, then what is the value of $4xy $?
Question : $\left(4 x^3 y-6 x^2 y^2+4 x y^3-y^4\right)$ can be expressed as:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile