Question : Find the value of $[49^{\frac{3}{2}}+49^{-\frac{3}{2}}]$.
Option 1: $\frac{11749}{343}$
Option 2: $\frac{117550}{343}$
Option 3: $\frac{117659}{343}$
Option 4: $\frac{117650}{343}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{117650}{343}$
Solution : Given: $[49^{\frac{3}{2}}+49^{-\frac{3}{2}}]$ Simplifying this expression by factorising, we have, = $[(7^{2})^{\frac{3}{2}}+(7^{2})^{\frac{–3}{2}}]$ = $[7^{3}+7^{–3}]$ = $[343+\frac{1}{7^{3}}]$ = $[343+\frac{1}{343}]$ = $[\frac{117649+1}{343}]$ = $\frac{117650}{343}$ Hence, the correct answer is $\frac{117650}{343}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\operatorname{cosec} \theta=1 \frac{7}{22}$, then find the value of $\cot ^2 \theta$.
Question : Find the value of the given expression: $\frac{(4\frac{1}{3}+3\frac{1}{3}\times 1\frac{4}{5}\div 3\frac{3}{4}\times (1\frac{1}{2}+1\frac{1}{3}))}{(\frac{2}{3}\div \frac{5}{6}\times \frac{2}{3})}$
Question : If $\sec \theta=2 \frac{4}{23}$,find the value of $\tan^2 \theta$.
Question : The value of $3\frac{1}{2} - [2\frac{1}{4}+ 1\frac{1}{4} - \frac{1}{2}(1\frac{1}{2}-\frac{1}{3} -\frac{1}{6})]$ is:
Question : If $\left(3 y+\frac{3}{y}\right)=8$, then find the value of $\left(y^2+\frac{1}{y^2}\right)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile