Question : Find the value of $\frac{\cos 37^{\circ}}{\sin 53^{\circ}}-\cos 47^{\circ} \operatorname{cosec} 43^{\circ}$.
Option 1: 0
Option 2: –1
Option 3: 2
Option 4: 1
Correct Answer: 0
Solution : $\frac{\cos 37^{\circ}}{\sin 53^{\circ}}-\cos 47^{\circ} \operatorname{cosec} 43^{\circ}$ = $\frac{\cos (90-53)^{\circ}}{\sin 53^{\circ}}-\cos (90-43)^{\circ} \operatorname{cosec} 43^{\circ}$ [$\sin \theta = \cos(90^\circ - \theta)$] = $\frac{\sin 53^{\circ}}{\sin 53^{\circ}}-\sin 43^{\circ} \operatorname{cosec} 43^{\circ}$ = 1 – 1 [$\because \sin \theta = \frac{1}{\operatorname{cosec} \theta}$] = 0 Hence, the correct answer is 0.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{\sin ^2 52^{\circ}+2+\sin ^2 38^{\circ}}{4 \cos ^2 43^{\circ}-5+4 \cos ^2 47^{\circ}}$ is:
Question : Find the value of $\frac{\cos 65^{\circ}}{\sin 25^{\circ}}+\frac{5 \sin 19^{\circ}}{\cos 71^{\circ}}-\frac{3 \cos 28^{\circ}}{\sin 62^{\circ}}$.
Question : Evaluate $\frac{\sin 54^{\circ}}{\cos 36^{\circ}}+\frac{\sec 46^{\circ}}{\operatorname{cosec} 44^{\circ}}$
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}-\sec 35^{\circ} \cdot \sin 55^{\circ}}{\sec 60^{\circ}+\operatorname{cosec} 30^{\circ}}$ is equal to:
Question : Find the value of $\frac{\sin ^2 39^{\circ}+\sin ^2\left(90^{\circ}–39^{\circ}\right)}{\cos ^2 35^{\circ}+\cos ^2\left(90^{\circ}–35^{\circ}\right)}+3 \tan 25^{\circ} \tan 75^{\circ}$:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile