Question : Find the value of $\left(\tan ^2 \theta+\tan ^4 \theta\right)$.
Option 1: $\cot ^2 \theta-\tan ^2 \theta$
Option 2: $\ {\sec}^4 \theta-\ {\sec}^2 \theta$
Option 3: $\ {\sec}^4 \theta-\ {\sec}^4 \theta$
Option 4: $ \ {\sec}^4 \theta+\ {\sec}^2 \theta$
Correct Answer: $\ {\sec}^4 \theta-\ {\sec}^2 \theta$
Solution : According to the question, $\left(\tan ^2 \theta+\tan ^4 \theta\right)$ $=(\tan^{2}\theta)^{2} + \tan^{2}\theta$ $=(\sec^{2}\theta - 1)^{2} + \sec^{2}\theta - 1$ $=\sec^{4}\theta - 2 \sec^{2}\theta + 1 + \sec^{2}\theta - 1$ $=\sec^{4}\theta - \sec^{2}\theta$ Hence, the correct answer is $\sec^{4}\theta - \sec^{2}\theta$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\left(2 \cos ^2 \theta-1\right)\left[\frac{1+\tan \theta}{1-\tan \theta}+\frac{1-\tan \theta}{1+\tan \theta}\right]$ is:
Question : If $\cot^2θ = 1 - e^2$, then the value of $\operatorname{cosec} θ + \cot^3θ \sec θ$ is:
Question : If $\tanθ + \cotθ = 2$, $\theta$ is an acute angle, then find the value of $2 \tan^{25}θ + 3 \cot^{20}θ + 5 \tan^{30}θ \cot^{15}θ$.
Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Question : Solve the following equation. $\sec ^2 \theta\left(\sqrt{1-\sin ^2 \theta}\right)= $ __________.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile