Question : Find the value of $\frac{\frac{1}{3} + \frac{1}{4}[\frac{2}{5}-\frac{1}{2}]}{1\frac{2}{3} \text{of} \frac{3}{4}-\frac{3}{4} \text{of} \frac{4}{5}}$.
Option 1: $\frac{37}{78}$
Option 2: $\frac{37}{13}$
Option 3: $\frac{74}{78}$
Option 4: $\frac{74}{13}$
New: SSC MTS 2024 Application Form OUT; Direct Link
Don't Miss: Month-wise Current Affairs | Upcoming Government Exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{37}{78}$
Solution : Given: $\frac{\frac{1}{3} + \frac{1}{4}[\frac{2}{5}–\frac{1}{2}]}{1\frac{2}{3} \text{of} \frac{3}{4}–\frac{3}{4} \text{of} \frac{4}{5}}$ Applying the BODMAS rule, we get, = $\frac{\frac{1}{3}+\frac{1}{4}[\frac{4–5}{10}]}{1\frac{2}{3} \text{of}\frac{3}{4}–\frac{3}{4}\text{of} \frac{4}{5}}$ = $\frac{\frac{1}{3}+\frac{1}{4}[\frac{–1}{10}]}{\frac{5}{3} \text{of}\frac{3}{4}–\frac{3}{4}\text{of}\frac{4}{5}}$ = $\frac{\frac{1}{3}–\frac{1}{40}}{\frac{5}{4}–\frac{3}{5}}$ = $\frac{\frac{40–3}{120}}{\frac{25–12}{20}}$ = $\frac{\frac{37}{120}}{\frac{13}{20}}$ = $\frac{37\times20}{120\times13}$ = $\frac{37}{78}$ Hence, the correct answer is $\frac{37}{78}$.
Application | Cutoff | Selection Process | Preparation Tips | Eligibility | Exam Pattern | Admit Card
Question : Find $\frac{0.04}{0.03}\text{of}\frac{( 3\frac{1}{3} – 2\frac{1}{2} ) ÷ \frac{1}{2} \space \text{of} \space 1\frac{1}{4} }{\frac{1}{3} + \frac{1}{5} \space \text{of} \space \frac{1}{9}}$.
Question : What is the value of $\frac{\left[\left(\frac{5}{7} \text { of } \frac{1}{12} \times \frac{1}{4}-\frac{1}{2} \times \frac{1}{8}\right)+\frac{5}{4} \times \frac{8}{15}-\frac{2}{3}\right]}{\frac{1}{2} \div \frac{1}{4}+\frac{1}{2}}$ ?
Question : What is the value of $\frac{132}{11} \times \frac{13}{12} \div \frac{169}{14}-\frac{1}{13}?$
Question : The value of $\left[\frac{1}{4}\right.$ of $\left.18 \div \frac{6}{5} \text{of}\left(\frac{1}{8}+\frac{7}{4}\right)\right] \times \frac{1}{15}$ is:
Question : What is the value of $\frac{39}{25} \div \frac{13}{5}+\frac{33}{5} \times \frac{4}{11} ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile