Question : Find the value of $\frac{(243)^{\frac{n}{5}}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$.
Option 1: 3
Option 2: 9
Option 3: 27
Option 4: 4
Correct Answer: 9
Solution : Consider, $\frac{(243)^{\frac{n}{5}}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$ $=\frac{((3)^5)^{\frac{n}{5}}\times 3^{2n+1}}{((3)^2)^{n}\times 3^{n-1}}$ $=\frac{3^n\times3^{2n+1}}{3^{2n}\times3^{n-1}}$ $=\frac{3^{n+2n+1}}{3^{2n+n-1}}$ $=\frac{3^{3n}\times 3}{3^{3n}\times3^{-1}}$ $=3 \times 3$ $=9$ Hence, the correct answer is 9.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{(243)^\frac{n}{5}\times 3^{2n+1}}{9^{n}\times 3^{n-1}}$ is:
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}-\frac{3}{4}+\frac{3}{4} \div \frac{1}{2}$ is:
Question : A student was asked to find the value of
Question : The value of $\frac{5-2 \div 4 \times[5-(3-4)]+5 \times 4 \div 2 \text { of } 4}{4+4 \div 8 \text { of } 2 \times(8-5) \times 2 \div 3-8 \div 2 \text { of } 8}$ is:
Question : The value of $\frac{2}{3} \div \frac{3}{10}$ of $\frac{4}{9}-\frac{4}{5} \times 1 \frac{1}{9} \div \frac{8}{15}+\frac{3}{4} \div \frac{1}{2}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile