Question : Find the value of $\cos 47^\circ \sec 133^\circ + \sin 44^\circ \text{cosec}\; 136^\circ $.
Option 1: $\frac{1}{2}$
Option 2: $1$
Option 3: $0$
Option 4: $–1$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : We know that $\sec (90°+ \theta) = – \ \text{cosec}\; \theta$ and $\text{cosec} \;(90°+\theta) = \sec \theta$ $\cos 47^\circ \sec 133^\circ + \sin 44^\circ \ \text{cosec}\;136^\circ $ $=\cos 47^\circ \sec (90^\circ + 43^\circ) + \sin 44^\circ \ \text{cosec} \;(90^\circ + 46^\circ) $ $=-\cos 47^\circ \text{cosec}\;43^\circ + \sin 44^\circ \sec 46^\circ $ $=-\cos 47^\circ \text{cosec}\; (90^\circ - 47^\circ) + \sin 44^\circ \sec (90^\circ - 44^\circ) $ $=-\cos 47^\circ \sec \;47^\circ + \sin 44^\circ \ \text{cosec} \;44^\circ $ $=-1 +1=0$ Hence the correct answer is $0$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What is the value of $\frac{\cos 50^{\circ}}{\sin 40^{\circ}}+\frac{3 \operatorname{cosec} 80^{\circ}}{\sec 10^{\circ}}–2 \cos 50^{\circ} \operatorname{cosec} 40^{\circ}$?
Question : $\frac{(1+\sec \theta \operatorname{cosec} \theta)^2(\sec \theta-\tan \theta)^2(1+\sin \theta)}{(\sin \theta+\sec \theta)^2+(\cos \theta+\operatorname{cosec} \theta)^2}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : What will be the value of $\frac{\sin 30^{\circ} \sin 40^{\circ} \sin 50^{\circ} \sin 60^{\circ}}{\cos 30^{\circ} \cos 40^{\circ} \cos 50^{\circ} \cos 60^{\circ}}$?
Question : Find the value of $\frac{\cos^2 15^{\circ}-\sin^2 15^{\circ}}{\cos^2 145^{\circ}+\sin^2 145^{\circ}}$.
Question : The value of $\frac{\left(\cos 9^{\circ}+\sin 81^{\circ}\right)\left(\sec 9^{\circ}+{\operatorname{cosec}} \;81^{\circ}\right)}{{\operatorname{cosec}}^2 \;71^{\circ}+\cos ^2 15^{\circ}-\tan ^2 19^{\circ}+\cos ^2 75^{\circ}} $ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile