Question : Find the value of $\cot ^2B- \operatorname{cosec}^2B$ for $ 0<B<90^{\circ}.$
Option 1: $1$
Option 2: $2$
Option 3: $–1$
Option 4: $–2$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $–1$
Solution : Given: $\cot^2 B-\operatorname{cosec}^2 B$ $=\frac{\cos^{2} B}{\sin ^{2} B}- \frac{1}{\sin^{2} B}$ $= \frac{\cos^{2}-1}{\sin ^{2} B}$ $= \frac{-\sin ^{2} B}{\sin ^{2} B}$ $=-1$ Hence, the correct answer is $-1$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $0^{\circ}< \theta< 90^{\circ}$ and $\operatorname{cosec \theta} =\cot^{2}\theta$, then the value of expression $\operatorname{cosec^{4}\theta}–\operatorname{2cosec^{2}\theta}-\cot^{2}\theta$ is equal to:
Question : If $0^{\circ}< A< 90^{\circ}$, then the value of $\tan ^{2}A+\cot^{2}A-\sec^{2}A \operatorname{cosec}^{2}A$ is:
Question : The value of the expression
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Question : Find the value of $\cos 0^{\circ}+\cos 30^{\circ}-\tan 45^{\circ}+\operatorname{cosec} 60^{\circ}+\cot 90^{\circ}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile