Question : Find the value of $\tan 3 \theta$, if $\sec 3 \theta=\operatorname{cosec}\left (4 \theta-15°\right)$.
Option 1: $\frac{1}{\sqrt{3}}$
Option 2: $\sqrt3$
Option 3: $–1$
Option 4: $1$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1$
Solution : Given, $\sec 3 \theta=\operatorname{cosec}\left (4 \theta-15°\right)$ We know $ \operatorname{cosec}\theta = \sec(90°-\theta)$ ⇒ $\sec3\theta = \sec (90°-(4\theta - 15°))$ ⇒ $3\theta = 90°-4\theta + 15°$ ⇒ $7\theta = 105°$ ⇒ $\theta = 15°$ $\therefore$ $\tan 3 \theta=\tan (3\times15)=\tan 45° = 1$ Hence, the correct answer is $1$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Question : The value of
Question : The value of $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$ is:
Question : If $\sec\theta-\tan\theta=\frac{1}{\sqrt3}$, then the value of $\sec\theta.\tan\theta$ is:
Question : $\frac{(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)}{(\sec \theta+\tan \theta)(1-\sin \theta)}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile