Question : Find the value of $\sec\theta - \tan\theta$, if $\sec\theta + \tan\theta = \sqrt{5}$.
Option 1: $5$
Option 2: $5 \frac{1}{5}$
Option 3: $\frac{\sqrt{5}}{5}$
Option 4: $\sqrt{5}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\sqrt{5}}{5}$
Solution : Given: $\sec\theta + \tan\theta = \sqrt{5}$ To find the value of $\sec\theta - \tan\theta$ We know, $\sec^2\theta -\tan^2\theta = 1$ ⇒ $\sec\theta -\tan\theta=\frac{1}{\sec\theta + \tan\theta}$ So, $\sec\theta - \tan\theta = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$ Hence, the correct answer is $\frac{\sqrt5}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Find the value of: $\sqrt{\frac{1 - \sin 3 \theta}{1 + \sin 3 \theta}}$
Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Question : If $\sec\theta+\tan\theta=5$, then find the value of $\tan\theta$.
Question : If $\sec\theta-\tan\theta=\frac{1}{\sqrt3}$, then the value of $\sec\theta.\tan\theta$ is:
Question : If $\tan\theta-\cot\theta=0$ and $\theta$ is positive acute angle, then the value of $\frac{\tan(\theta+15)}{\tan(\theta-15)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile