Question : Find the value of $\sqrt{30+\sqrt{30+\sqrt{30+...}}}$ :
Option 1: 5
Option 2: $3\sqrt{10}$
Option 3: 6
Option 4: 7
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 6
Solution : Let $x = \sqrt{30+\sqrt{30+\sqrt{30+...}}}$ So, ${x = }\sqrt{30+x}$ By squaring both sides, we get, $⇒x^{2}=(\sqrt{30+x})^{2}$ $⇒x^{2}=30+x$ $⇒x^{2}–x–30=0$ $⇒x^{2}– 6x+5x–30=0$ $⇒x(x–6)+5(x–6) = 0$ $⇒(x–6)(x+5)=0$ $⇒x=6,–5$ A square root cannot be negative. Thus, $x$ cannot be –5. So, $x = 6$ Hence, the correct answer is 6.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What is the value of $\frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}–\sqrt{5}} \div \frac{\sqrt{14}+\sqrt{10}}{\sqrt{14}–\sqrt{10}}+\frac{\sqrt{10}}{\sqrt{5}}$?
Question : Find the value of the given expression. $\sqrt{8+\sqrt{1681}}$
Question : If $\left(x^2+\frac{1}{x^2}\right)=7$, and $0<x<1$, find the value of $x^2-\frac{1}{x^2}$.
Question : What is the value of $\sin 30^{\circ}+\cos 30^{\circ}+\tan 30^{\circ}$?
Question : If $x=1+\sqrt{2}+\sqrt{3}$, then the value of $(2x^4-8x^3-5x^2+26x-28)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile