Question : Find the value of the expression $\frac{x^2-1}{x-1}-\frac{x^2-9}{x-3}$.
Option 1: 1
Option 2: –2
Option 3: –1
Option 4: 2
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: –2
Solution : $\frac{x^2-1}{x-1}-\frac{x^2-9}{x-3}$ = $\frac{(x-1)(x+1)}{x-1}-\frac{(x-3)(x+3)}{x-3}$ = $(x+1) - (x+3)$ = $-2$ Hence, the correct answer is –2.
Candidates can download this e-book to give a boost to thier preparation.
Application | Eligibility | Admit Card | Answer Key | Preparation Tips | Result | Cutoff
Question : Simplify the given expression and find the value for $x=-1$. $\frac{10 x^2+5 x+2 x y+y}{5 x+y}$
Option 1: –1
Option 2: 0
Option 3: 1
Question : If $x+\frac{1}{x}=2$, then find the value of $x^{1823}+\frac{1}{x^{1929}}$.
Option 1: 2
Option 2: 1
Option 3: 0
Option 4: –1
Question : If $\frac{x}{y}=\frac{4}{5}$, then the value of $(\frac{4}{7}+\frac{2y–x}{2y+x})$ is:
Option 1: $\frac{3}{7}$
Option 2: $1\frac{1}{7}$
Option 3: $1$
Option 4: $2$
Question : If $(9-3x)-(17x-10)=1$, then the value of $x$ is:
Option 1: $1$
Option 2: $–1$
Option 3: $\frac{9}{10}$
Option 4: $–\frac{9}{10}$
Question : If $x^4+\frac{1}{x^4}=194, x>0$, then find the value of $x^3+\frac{1}{x^3}+x+\frac{1}{x}$
Option 1: 76
Option 2: 66
Option 3: 56
Option 4: 46
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile