Question : Find the value of the following expression $\frac{(1+\sec\phi)}{\sec\phi}(1-\cos\phi)$.
Option 1: $\cos ^2 \phi$
Option 2: $\sec ^2 \phi$
Option 3: $\cot ^2 \phi$
Option 4: $\sin ^2 \phi$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sin ^2 \phi$
Solution : Given: $\frac{(1+\sec\phi)}{\sec\phi}(1-\cos\phi)$ = $\frac{(1+\frac{1}{\cosØ})}{\frac{1}{\cos\phi}}(1-\cos\phi)$ = $\cos\phi\frac{(1+\cos\phi)}{\cos\phi}$$(1-\cos\phi)$ = $(1+\cos\phi)(1-\cos\phi)$ = $1-\cos^2\phi$ = $\sin^2\phi$ Hence, the correct answer is $\sin^2\phi$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : The given expression is equal to: $1-\frac{\tan ^2 \phi}{\sec ^2 \phi}$
Question : If $\sin\phi=\frac{5}{6}$, the value of $\cot\phi \cdot \sin\phi \cdot \cos\phi$ is:
Question : Find the value of $\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}+2$.
Question : Simplify the following expression: $\frac{1-\sin A}{\cos A}+\frac{\cos A}{1-\sin A}$
Question : If $\theta+\phi=\frac{\pi}{2}$ and $\sin\theta=\frac{1}{2}$, then the value of $\sin\phi$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile