Question : Find the value of the following expression. $5\left(\sin ^4 \theta+\cos ^4 \theta\right)+3\left(\sin ^6 \theta+\cos ^6 \theta\right)+19 \sin ^2 \theta \cos ^2 \theta$
Option 1: 8
Option 2: 5
Option 3: 6
Option 4: 7
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 8
Solution : $5(\sin ^4 \theta+\cos ^4 \theta)+3(\sin ^6 \theta+\cos ^6 \theta)+19 \sin ^2 \theta \cos ^2 \theta$ $=5[(\sin ^2 \theta+\cos ^2 \theta)^2-2\sin ^2 \theta\cos ^2 \theta]+3[(\sin ^2 \theta+\cos ^2 \theta)^3-3\sin ^2 \theta\cos ^2 \theta(\sin ^2 \theta+\cos ^2 \theta)] + 19 \sin ^2 \theta \cos ^2 \theta$ $= 5[(1)^2-2\sin ^2 \theta\cos ^2 \theta]+3[(1)^3-3\sin ^2 \theta\cos ^2 \theta(1)] + 19 \sin ^2 \theta \cos ^2 \theta$ $= 5-10\sin ^2 \theta\cos ^2 \theta+3-9\sin ^2 \theta\cos ^2 \theta + 19 \sin ^2 \theta \cos ^2 \theta$ $=8-19\sin ^2 \theta\cos ^2 \theta+19 \sin ^2 \theta \cos ^2 \theta$ = 8 Hence, the correct answer is 8.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : Find the value of the following expression. $12\left(\sin^4 \theta+\cos^4 \theta\right)+18\left(\sin^6 \theta+\cos^6 \theta\right)+78 \sin^2 \theta \cos^2 \theta$
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : If $8 \cot \theta=6$, then the value of $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}$ is:
Question : The expression $\frac{\left(1-2 \sin ^2 \theta \cos ^2 \theta\right)(\cot \theta+1) \cos \theta}{\left(\sin ^4 \theta+\cos ^4 \theta\right)(1+\tan \theta) \operatorname{cosec} \theta}-1,0^{\circ}<\theta<90^{\circ}$, equals:
Question : Simplify the following expression. $\frac{\sin \theta - 2 \sin ^3 \theta}{2 \cos ^3 \theta - \cos \theta}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile