Question : Find the value of the following expression. $12\left(\sin^4 \theta+\cos^4 \theta\right)+18\left(\sin^6 \theta+\cos^6 \theta\right)+78 \sin^2 \theta \cos^2 \theta$
Option 1: 30
Option 2: 40
Option 3: 10
Option 4: 20
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 30
Solution : $12(\sin^4 \theta+\cos^4 \theta)+18(\sin^6 \theta+\cos^6 \theta)+78 \sin^2 \theta \cos^2 \theta$ $=12[(\sin^2 \theta+\cos^2\theta)^2-2\sin^2 \theta \cos^2 \theta]+18[(\sin^2 \theta+\cos^2 \theta)^3-3\sin^2 \theta \cos^2 \theta(\sin^2 \theta+\cos^2\theta)]+78 \sin^2 \theta \cos^2 \theta$ $=12[1-2\sin^2 \theta \cos^2 \theta]+18[1-3\sin^2 \theta \cos^2 \theta]+78 \sin^2 \theta \cos^2 \theta$ $= 12-24\sin^2 \theta \cos^2 \theta+18-54\sin^2 \theta \cos^2 \theta+78 \sin^2 \theta \cos^2 \theta$ $= 12+18$ $=30$ Hence, the correct answer is 30.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Find the value of the following expression. $5\left(\sin ^4 \theta+\cos ^4 \theta\right)+3\left(\sin ^6 \theta+\cos ^6 \theta\right)+19 \sin ^2 \theta \cos ^2 \theta$
Question : Simplify the following expression. $\frac{\sin \theta - 2 \sin ^3 \theta}{2 \cos ^3 \theta - \cos \theta}$
Question : The expression $\frac{\left(1-2 \sin ^2 \theta \cos ^2 \theta\right)(\cot \theta+1) \cos \theta}{\left(\sin ^4 \theta+\cos ^4 \theta\right)(1+\tan \theta) \operatorname{cosec} \theta}-1,0^{\circ}<\theta<90^{\circ}$, equals:
Question : If $\sin\theta+\sin^{2}\theta=1$, then the value of $\cos^{12}\theta+3\cos^{10}\theta+3\cos^{8}\theta+\cos^{6}\theta-1$ is:
Question : If $\sin \theta-\cos \theta=0$, then find the value of $\left(\sin^3 \theta-\cos^3 \theta\right)$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile