Question : Find the value of the given expression. $\sqrt{20-\sqrt{20-\sqrt{20-\sqrt{20-\cdots \infty}}}}$
Option 1: 4
Option 2: 6
Option 3: 5
Option 4: 2
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 4
Solution : Given expression, $\sqrt{20-\sqrt{20-\sqrt{20-\sqrt{20-\cdots \infty}}}}$ Let us equate this with $y$ ⇒ $y=\sqrt{20-\sqrt{20-\sqrt{20-\sqrt{20-\cdots \infty}}}}$ ⇒ $y=\sqrt{20-y}$ Squaring both sides, ⇒ $y^2=20-y$ ⇒ $y^2+y-20=0$ ⇒ $y^2+5y-4y-20=0$ ⇒ $y(y+5)-4(y+5)=0$ ⇒ $(y+5)(y-4)=0$ ⇒ $y=-5$ and $y=4$ Hence, the correct answer is 4.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : Find the value of the given expression. $\sqrt{8+\sqrt{1681}}$
Question : Simplify the expression $\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}$, where $x=2$ and $y=3$.
Question : If $x=1+\sqrt{2}+\sqrt{3}$, then the value of $(2x^4-8x^3-5x^2+26x-28)$ is:
Question : Find the simplified value of the given expression. $4 \frac{4}{5} ÷ \frac{3}{5} \text { of } 5+\frac{4}{5} \times \frac{3}{10}-\frac{1}{5}$
Question : Find the value of $\sqrt{30+\sqrt{30+\sqrt{30+...}}}$ :
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile