Question : For any acute angle $\theta, \sin \theta+\sin^2 \theta=1$, then the value of $\cos^2 \theta+\cos^4 \theta=$___________.
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: –1
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : Given: $\sin \theta+\sin ^2 \theta=1$ ⇒ $\sin\theta = 1- \sin^2\theta$ ⇒ $\sin \theta = \cos^2\theta$ $\cos^2 \theta+\cos^4 \theta= \sin\theta + \sin^2\theta = 1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If for any acute angle A, $\sin A+\sin^{2} A=1$, then the value of $\cos^{2}A+\cos^{4}A$ is:
Question : If $\sin\theta+\sin^{2}\theta=1$, then the value of $\cos^{12}\theta+3\cos^{10}\theta+3\cos^{8}\theta+\cos^{6}\theta-1$ is:
Question : If $\sin \theta +\sin ^{2}\theta =1$, then the value of $\cos ^{2}\theta +\cos ^{4}\theta$ is:
Question : If $\sin \theta-\cos \theta=0$, then find the value of $\left(\sin^3 \theta-\cos^3 \theta\right)$.
Question : Value of $\sec^2\theta-\frac{\sin^2\theta-2\sin^4\theta}{2\cos^4\theta-\cos^2\theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile