Question : For any real values of $\theta, \sqrt{\frac{\sec\theta \:-\: 1}{\sec\theta \:+\: 1}}=$?
Option 1: $\cot\theta - \operatorname{cosec}\theta$
Option 2: $\sec\theta - \tan\theta$
Option 3: $\operatorname{cosec}\theta - \cot\theta$
Option 4: $\tan\theta - \sec\theta$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
Correct Answer: $\operatorname{cosec}\theta - \cot\theta$
Solution :
Given:
$\sqrt{\frac{\sec\theta \:-\: 1}{\sec\theta \:+\: 1}}$
= $\sqrt{\frac{(\sec\theta \:-\: 1)(\sec\theta\:-\:1)}{(\sec\theta \:+\:1)(\sec\theta\:-\:1)}}$
= $\sqrt{\frac{(\sec\theta\:-\:1)^2}{\sec^2\theta\:-\:1}}$
= $\sqrt{\frac{(\sec\theta\:-\:1)^2}{\tan^2\theta}}$
= $\frac{(\sec\theta\:-\:1)}{\tan\theta}$
= $\operatorname{cosec}\theta-\cot\theta$
Hence, the correct answer is $\operatorname{cosec}\theta-\cot\theta$.
Related Questions
Know More about
Staff Selection Commission Combined Grad ...
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Get Updates BrochureYour Staff Selection Commission Combined Graduate Level Exam brochure has been successfully mailed to your registered email id “”.