Question : For real $a, b, c$ if $a^2+b^2+c^2=ab+bc+ca$, then value of $\frac{a+c}{b}$ is:
Option 1: 1
Option 2: 2
Option 3: 3
Option 4: 0
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : Given: $a^{2} + b^{2} + c^{2} = (ab+bc+ca)$ ⇒ $a^{2} + b^{2} + c^{2} - (ab+bc+ca)=0$ Since : $a^2+b^2+c^2-ab-bc-ca = \frac{1}{2}[(a-b)^2+(b-c)^2+(c-a)^2]$ So, $a^2+b^2+c^2-ab-bc-ca = \frac{1}{2}[(a-b)^2+(b-c)^2+(c-a)^2]=0$ ⇒ $a=b=c $ So, $\frac{a+c}{b} = \frac{a+a}{a} = 2$ Hence, the correct answer is 2.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $a^2+b^2+c^2=ab+bc+ca$, then the value of $\frac{11a^4+13b^4+15c^4}{16a^2b^2+19b^2c^2+17c^2a^2}$ is:
Question : If $a + b + c = 0$ and $ab + bc + ca = -11$, then what is the value of $a^2+b^2+c^2$?
Question : If $a^{2}+b^{2}+c^{2}-ab-bc-ca=0$, then
Question : If $\small c+\frac{1}{c}=3$, then the value of $\left (c-3 \right )^{7}+\frac{1}{c^{7}}$ is:
Question : The value of the expression $\frac{(a-b)^{2}}{(b-c)(c-a)}+\frac{(b-c)^{2}}{(a-b)(c-a)}+\frac{(c-a)^{2}}{(a-b)(b-c)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile