7 Views

Question : From two points, lying on the same horizontal line, the angles of elevation of the top of the pillar are $\theta$ and $\phi$ ($\theta<\phi$). If the height of the pillar is $h$ m and the two points lie on the same sides of the pillar, then the distances between the two points are:

Option 1: $h(\tan\theta-\tan\phi)$ metre

Option 2: $h(\cot\phi-\cot\theta)$ metre

Option 3: $h(\cot\theta-\cot\phi)$ metre

Option 4: $h\frac{(\tan\theta \tan\phi)}{(\tan\phi-\tan\theta)}$ metre


Team Careers360 23rd Jan, 2024
Answer (1)
Team Careers360 24th Jan, 2024

Correct Answer: $h(\cot\theta-\cot\phi)$ metre


Solution :
Let AB = height of pole = $h$ metre
$\angle$ACB = $\theta$, $\angle$ADB = $\phi$
In ∆ABD,
$\tan\phi=\frac{AB}{BD}$
⇒ $BD=h\cot\phi$
In ∆ABC,
$\tan\theta=\frac{AB}{BC}$
⇒ $BC=h\cot\theta$
∴ Required distance, CD
$=h\cot\theta-h\cot\phi$
$= h(\cot\theta-\cot\phi)$ metre
Hence, the correct answer is $h(\cot\theta-\cot\phi)$ metre.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books