Question : Given $A$ is an acute angle, what is the value of $\left(1-\sin ^2 A\right) \operatorname{cosec}^2 A$?
Option 1: $\cot ^2 \mathrm{~A}$
Option 2: $\cos ^2 \mathrm{~A}$
Option 3: $\tan ^2 \mathrm{~A}$
Option 4: $\sin ^2 \mathrm{~A}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\cot ^2 \mathrm{~A}$
Solution : Given: $(1-\sin ^2 A) \operatorname{cosec}^2 A$ We know, $\sin^2A + \cos^2A=1$ and $\operatorname{cosec} A=\frac{1}{\sin A}$ So, $(1-\sin ^2 A) \operatorname{cosec}^2 A$ $=\cos^2A\cdot\frac{1}{\sin^2A}$ $=\cot^2A$ Hence, the correct answer is $\cot^2A$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : Simplify the given equation: $\frac{\cot^3A–1}{\cot A–1}$
Question : What is the value of the expression: $\sin A(1+\frac{\sin A}{\cos A})+\cos A(1+\frac{\cos A}{\sin A})$?
Question : Simplify the given equation: $(1+\tan ^2 A)(1+\cot ^2 A)=?$
Question : If $\operatorname{cosec} A+\cot A=a \sqrt{b}$, then find the value of $\frac{\left(a^2 b-1\right)}{\left(a^2 b+1\right)}$.
Question : What is the value of $\frac{1+\tan A}{\operatorname{cosec} A}+\frac{1+\cot A}{\sec A}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile