Question : Given that A and B are second quadrant angles, $\sin A = \frac{1}{3}$ and $\sin B = \frac{1}{5}$, then find the value of $\cos(A-B)$.
Option 1: $\frac{4 \sqrt{3}+1}{15}$
Option 2: $\frac{8 \sqrt{3}-1}{15}$
Option 3: $\frac{8 \sqrt{3}+1}{15}$
Option 4: $\frac{4 \sqrt{3}-1}{15}$
Correct Answer: $\frac{8 \sqrt{3}+1}{15}$
Solution : $\sin A = \frac{1}{3}$ ⇒ $\cos A = \sqrt{1-\sin^2 A} = \sqrt{1-(\frac{1}{9})} = \frac{\sqrt8}{3}$ Also, $\sin B = \frac{1}{5}$ ⇒ $\cos B = \sqrt{1-\sin^2 B} = \sqrt{1-(\frac{1}{25})} = \frac{2\sqrt6}{5}$ Now, $\cos(A-B) = \cos A \cos B + \sin A \sin B$ $= \frac{\sqrt8}{3} × \frac{2\sqrt6}{5} + \frac{1}{3} × \frac{1}{5}$ $= \frac{8\sqrt3+1}{15}$ Hence, the correct answer is $\frac{8\sqrt3+1}{15}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : Find the value of $\sqrt{\frac{1-\tan A}{1+\tan A}}$.
Question : If $\sin (A-B)=\sin A \cos B–\cos A\sin B$, then $\sin 15°$ will be:
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then the value of $(\cos \theta-\sin \theta)$ is:
Question : If $\sin A=\frac{1}{2}$, then the value of $(\tan A+\cos A)$ is:
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile