Question : Given $\small 2^{2}+4^{2}+6^{2}+......+40^{2}=11480$, then the value of $\small 1^{2}+2^{2}+3^{2}+......+20^{2}$ is:
Option 1: 2870
Option 2: 2868
Option 3: 2867
Option 4: 2869
Correct Answer: 2870
Solution : Given: $2^{2}+4^{2}+6^{2}+......+40^{2}=11480$ $⇒2^{2}(1^{2}+2^{2}+3^{2}+......+20^{2})=11480$ $⇒1^{2}+2^{2}+3^{2}+......+20^{2}=\frac{11480}{4}$ $\therefore1^{2}+2^{2}+3^{2}+......+20^{2}=2870$ Hence, the correct answer is 2870.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\small 1^{2}+2^{2}+3^{2}+......+\ p^{2}=\frac{p(p+1)(2p+1)}{6}$, then $\small 1^{2}+3^{2}+5^{2}+......+17^{2}$ is equal to:
Question : Directions: Which of the following interchange of numbers (not digits) would make the given equation correct? 16 × 5 ÷ 20 + 6 + 50 = 40
Question : If a3 + b3 = 217 and a + b = 7, then the value of ab is:
Question : If $x^4+y^4=x^2 y^2$, then the value of $x^6+y^6$ is:
Question : If $x:y::2:3$ and $2:x::4:8$, then the value of $y$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile