430 Views

Height of the cylinder of maximum volume that can be inscribed in a sphere of radius 12cm is


Bharath kumar 16th Jan, 2021
Answer (1)
Parmeshwar Suhag 16th Jan, 2021

Hello,

As per the question, we have to inscribe a cylinder into a sphere. Radis of sphere is = 12 cm

Let r is the radius and h is the height of this cylinder.

So when we make figure of this question, we found an equation i.e. (h/2)^2 + r^2 = R^2

Solving it we get , h = 2 ( √ R^2 - r^2 )

Now volune of cylinder V is = pi . r^2 . h

Put value of this h into this equation, we get

V = 2. pi. r^2. ( √ R^2 - r^2 )

We have to maximize this volume, so do dV/dr = 0

Solving it we get r^2 = 2. R^2/3

put R = 12 here, so r = 4√6

and h = 8√3

Hope it helps.

Related Questions

UPES B.Tech Admissions 2026
Apply
Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
UPES Integrated LLB Admission...
Apply
Ranked #18 amongst Institutions in India by NIRF | Ranked #1 in India for Academic Reputation by QS Rankings | 16 LPA Highest CTC
Presidency University MBA Adm...
Apply
NAAC A+ Accredited | Highest CTC 10 LPA | Top Recruiters : Amazon, Accenture, KPMG, EY, Capgemini & many more
Nirma University Law Admissio...
Apply
Grade 'A+' accredited by NAAC | Ranked 33rd by NIRF 2025
UPES M.Tech Admissions 2026
Apply
Ranked #45 Among Universities in India by NIRF | 1950+ Students Placed 91% Placement, 800+ Recruiters
UPES | BBA Admissions 2026
Apply
#36 in NIRF, NAAC ‘A’ Grade | 100% Placement, up to 30% meritorious scholarships
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books