Question : 'I' is the incentre of $\triangle$ABC. If $\angle$BIC = 108$^\circ$, then $\angle$A = ?
Option 1: 54$^\circ$
Option 2: 36$^\circ$
Option 3: 72$^\circ$
Option 4: 81$^\circ$
Correct Answer: 36$^\circ$
Solution : In $\triangle$ABC, if 'I' is the incenter, then $\angle BIC = 90^\circ + \frac{A}{2}$. Given that $\angle BIC = 108^\circ$, So, $\angle A = 2 \times (\angle BIC - 90^\circ) = 2 \times (108^\circ - 90^\circ) = 36^\circ$ Hence, the correct answer is 36$^\circ$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=54^{\circ}$. If I is the incentre of the triangle, then the measure of $\angle \mathrm{BIC}$ is:
Question : In $\triangle \mathrm{ABC}, \angle \mathrm{A}=68^{\circ}$. If I is the incentre of the triangle, then the measure of $\angle B I C$ is:
Question : I is the incentre of $\triangle \mathrm{ABC}$ of $\angle \mathrm{A}=46°$, then $\angle \mathrm{BIC}=$?
Question : Internal bisectors of $\angle$ B and $\angle$ C of $\triangle$ ABC meet at O. If $\angle$ BAC = $80^{\circ}$, then the value of $\angle$ BOC is:
Question : In a $\triangle \mathrm{ABC}$, the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ meet at $\mathrm{O}$. If $\angle \mathrm{BOC}=142^{\circ}$, then the measure of $\angle \mathrm{A}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile