Question : I is the incentre of the $\triangle$XYZ. If $\angle$YIZ = 115°, then what is the $\angle$YXZ?
Option 1: 55°
Option 2: 45°
Option 3: 50°
Option 4: 60°
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 50°
Solution : In $\triangle$XYZ, I is the incentre. Angle formed at incentre opposite to given side = 90° + ($\frac{1}{2}$ × Angle opposite to given side) ⇒ $\angle$YIZ = 90° + ($\frac{1}{2}$ × $\angle$YXZ) ⇒ 115° = 90° + ($\frac{1}{2}$ × $\angle$YXZ) ⇒ $\frac{1}{2}$ × $\angle$YXZ = 25° ⇒ $\angle$YXZ = 50° Hence, the correct answer is 50°.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : M is the incentre of the $\triangle $XYZ. If $\angle $YXZ + $\angle $YMZ = 150°, then what is the value of $\angle $YXZ?
Question : O is the incentre of the $\triangle \mathrm{PQR}$. If $\angle \mathrm{POR}=120°$, then what is the $\triangle \mathrm{PQR}$?
Question : In $\triangle \mathrm{XYZ}$, I is the incentre of the $\triangle \mathrm{XYZ}$. If $\angle \mathrm{XYZ}=40$$^\circ$, then what is the value of $\angle \mathrm{XIZ}$?
Question : In $\triangle ABC$, the internal bisectors of $\angle ABC$ and $\angle ACB$ meet at $I$ and $\angle BAC=50°$. The measure of $\angle BIC$ is:
Question : In a $\triangle ABC$, $\angle A +\angle B=70°$ and $\angle B+\angle C=130°$.Then, the value of $\angle A$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile