Question : If 2A = 3B and 3B = 2C, then what is $A:B:C$?
Option 1: $3:2:3$
Option 2: $2:3:2$
Option 3: $1:3:1$
Option 4: $2:3:4$
Correct Answer: $3:2:3$
Solution : 2A = 3B and 3B = 2C ⇒ $ A= \frac{3B}{2}$ and $C = \frac{3B}{2}$ So, the required ratio is, $A:B:C = \frac{3B}{2} : B : \frac{3B}{2}$ ⇒ $A:B:C = 3:2:3$ Hence, the correct answer is $3:2:3$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $2A = 3B = 5C$, what is $A:B:C$?
Question : If $2A=3B$, then what is the value of $\frac{A+B}{A}$?
Question : If $\left (2a-3 \right )^{2}+\left (3b+4 \right )^{2}+\left ( 6c+1\right)^{2}=0$, then the value of $\frac{a^{3}+b^{3}+c^{3}-3abc}{a^{2}+b^{2}+c^{2}}+3$ is:
Question : If $(2x - 5y)^3 - (2x+5y)^3 = y[Ax^2 + By^2]$, then what is the value of $(2A - B)$?
Question : Simplify the given expression: $b + 2a - [(3b + a) - (2a + b) + 2a] - a$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile