Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Question : What is $\frac{\left (x^{2}-y^{2} \right)^{3}+\left (y^{2}-z^{2} \right )^{3}+\left (z^{2}-x^{2} \right )^{3}}{\left (x-y \right)^{3}+\left (y-z \right )^{3}+\left (z-x \right)^{3}}?$
Question : If $x+y+z=13,x^2+y^2+z^2=133$ and $x^3+y^3+z^3=847$, then the value of $\sqrt[3]{x y z}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile