Question : If 4$\theta$ is an acute angle, and cot 4$\theta$ = tan($\theta$ – 5°), then what is the value of $\theta$?
Option 1: 19°
Option 2: 45°
Option 3: 21°
Option 4: 24°
Correct Answer: 19°
Solution : According to the question, ⇒ $\cot(4θ) = \tan(θ - 5°)$ ⇒ $\cot(4θ) = \cot(90° - (θ - 5°))$ ⇒ $4θ = 90° - (θ - 5°)$ ⇒ $4θ +θ - 5° = 90°$ ⇒ $5θ = 95° $ ⇒ $θ =19°$ Hence, the correct answer is 19°.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\tanθ + \cotθ = 2$, $\theta$ is an acute angle, then find the value of $2 \tan^{25}θ + 3 \cot^{20}θ + 5 \tan^{30}θ \cot^{15}θ$.
Question : If $\sin^4\theta+\cos^4\theta=2\sin^2\theta \cos^2\theta$, where $\theta$ is an acute angle, then the value of $\tan\theta$ is:
Question : If $\theta$ is an acute angle and $\sin \theta+\operatorname{cosec} \theta=2$, then the value of $\sin ^5 \theta+\operatorname{cosec}^5 \theta$ is:
Question : If $\sec(7\theta+28°)= \operatorname{cosec} (30°-3\theta)$. Then, the value of $\theta$ is:
Question : If $\sin^2\theta = \cos^3\theta$, then the value of $(\cot^2\theta -\cot^6\theta)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile